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Figure 1.
2,2 -Bipyrroles, which are obvious precursors for the synthesis of 2,2 -bipyrrole-based natural products,
are synthesized in three steps from pyrrole employing known pyrrolyl ketoalcohols by a sequential alco-
hol oxidation and Paal-Knorr pyrrole synthesis.

� 2008 Elsevier Ltd. All rights reserved.
Bipyrroles are attractive and obvious precursors for the synthe-
sis of various polyhalogenated 1,20-1 and 1,30-bipyrroles2 found in
marine organisms and in several 2,20-bipyrrole-based natural
products3 (Fig. 1). Several new syntheses of 1,20-, 1,30-, and 2,20-
bipyrroles have been achieved in our laboratory in the context of
approaches to the environmentally significant and ubiquitous
naturally occurring polyhalogenated analogs (e.g., 1 and 2).

Unlike the relatively little studied 1,20- and 1,30-bipyrroles, syn-
theses of 2,20-bipyrroles have attracted the attention of a number
of different research groups since the beginning of the last century.
Previous syntheses of 2,20-bipyrroles include metal-catalyzed cou-
pling of halogenated pyrroles,4–11 such as palladium-4 and copper-
catalyzed5 coupling of iodopyrroles. 2,20-Bipyrroles can also be
synthesized by Suzuki coupling of boronopyrroles and pyrrolyltri-
flate,6 Paal-Knorr condensation,7 aza-Nazarov reaction,8 Trofimov
reaction,9 phenyliodine bis(trifluoroacetate)-mediated oxidative
coupling of pyrroles,10 nickel-catalyzed coupling of pyrroles,3d

and by other methods.11
ll rights reserved.
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Our recent work12 describing the Paal-Knorr reductive pyrro-
lylation of nitropyrroles in the presence of 1,4-diketones for the
synthesis of 1,20- and 1,30-bipyrroles prompted us to explore a
new and simple synthesis of 2,20-bipyrroles.

In the initial study, the known pyrrolyl ketoalcohol 4, which
was prepared by magnetization of pyrrole and reaction with buty-
rolactone, was oxidized with pyridine chlorochromate (PCC)13 in
methylene chloride to give the desired ketoaldehyde 515 in 92%
yield. After exploration of this Paal-Knorr reaction under various
conditions, we found that treatment of ketoaldehyde 5 with benz-
ylamine and acetic acid in methanol led to the desired 1-benzyl-
2,20-bipyrrole16 (6) in 81% yield (Scheme 1).

The same reaction of ketoaldehyde 5 with benzylamine and a
1:1 mixture of acetic acid and sodium acetate in toluene provides
bipyrrole 6 in a lower 68% yield.
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With these intial results in hand, other amines were allowed to
react with 5 and the N-methylpyrrole analog 7, and our results are
summarized in Scheme 2 and in Table 1. Both conditions A and B
give good results of 75% and 65% of product 8,16 respectively, when
p-methoxybenzylamine was employed (entries 3 and 4). Allyla-
mine gave the best yield of 96% of 916 when the reaction was con-
ducted in acetic acid and methanol (entry 5), while only 51% of 9 is
obtained using acetic acid and sodium acetate in toluene (entry 6).
Methylamine affords excellent yields of 10 (81% and 89%) under
conditions A and B. During our efforts to prepare the parent bipyr-
role 11,16–18 no 11 was obtained when ketoaldehyde 5 was treated
with ammonium acetate, acetic acid, and potassium acetate in tol-
uene. However, this reaction worked well when 5 was treated with
ammonium acetate in a 1:25 solution of 28% ammonium hydrox-
ide and ethanol (conditions C) (entry 9).

Bipyrrole 14 is an important intermediate for the synthesis of
the natural products 1 and 2. Therefore, N-methylketoaldehyde 7
was targeted for the synthesis of bipyrrole 14. Thus, 715 was pre-
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Table 1
Paal-Knorr condensation of 5 and 7 for the synthesis of 2,20-bipyrroles 6, 8–24

Entry R R1 Condition Product Yield (%)

1 H PhCH2 A 6 81
2 H PhCH2 B 6 68
3 H p-MeOPhCH2 A 8 75
4 H p-MeOPhCH2 B 8 65
5 H CH2CH@CH2 A 9 96
6 H CH2CH@CH2 B 9 51
7 H Me A 10 81
8 H Me B 10 89
9 H H C 11 53

10 Me PhCH2 B 12 30
11 Me CH2CH@CH2 A 13 47
12 Me CH2CH@CH2 B 13 49
13 Me Me A 14 40
14 Me Me B 14 57
15 Me H C 10 49

Conditions A: amine, AcOH, MeOH, 40 �C; Conditions B: amine, AcOH, NaOAc, tolu-
ene, 60 �C; Conditions C: NH4OAc, 28% NH4OH, EtOH, 40 �C.
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pared in two steps from N-methylpyrrole by lithiation14 with n-
butyllithium and TMEDA followed by quenching with butyrolac-
tone to give the corresponding ketoalcohol 1515 (not shown), and
subsequent oxidation with pyridinium chlorochromate (PCC)13 in
methylene chloride.

Methylamine in acetic acid and sodium acetate in toluene give
the best result for the preparation of bipyrrole 143d,16 (57% yield,
entry 14). Other amines such as benzylamine and allylamine give
bipyrroles 1216 and 1316 in lower yields (entries 10–13). A 49%
yield of 1011a,16 was obtained when 7 was treated with ammonium
acetate in ammonium hydroxide and ethanol.

Our results indicate that ketoaldehyde 5 is invariably superior
to 7 under these reaction conditions. For a synthesis of natural
bipyrrole 1, intermediate 14 was most efficiently obtained from
known ketoalcohol 4 in three steps (Scheme 3). Bipyrrole 14 was
generated in 91% yield from 10 by alkylation with iodomethane.
Exhaustive bromination of bipyrrole 14 with N-bromosuccinimide
in THF gave 13d in 78% yield.

In summary, a relatively efficient and simple synthesis of 2,20-
bipyrroles using a modified Paal-Knorr condensation was devel-
oped, which is potentially useful for the synthesis of 2,20-bipyr-
role-based natural products, and is particularly attractive for the
synthesis of 2,20-bipyrroles with different N-substituents.
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